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Biostatistical Analysis of the
Micronucleus Mutagenicity Assay
Based on the Assumption of a Mixing

Distribution
by Ludwig Hothorn

The ir vivo micronucleus assay can be analyzed by comparing the number of micronuclei (MN) of several dose groups
with those of a control group. In several publications, difficulties arose in estimating a snitable distribution for MN, even
in the untreated historical control groups. Mitchell et al. described the presence of a subpopulation of more susceptible
responders. Based on this assumption of such a subpopulation, score tests were used for the mixing distribution of
responders and nonresponders (behavior same as in untreated control animals) within the dose groups. The power behavior
of these tests was characterized with a simulation study, The advantage of score tests can be shown, even in the practical

and important guideline case of only five animals per group.

Introduction

The statistical analysis of the in vivo micronucleus assay is
based on significance tests for the differences between the
numbers of micronucleated polychromatic erythrocytes (MN) in
the control group and several dose groups. In several publica-
tions, difficulties arose in estimating a suitable distribution of the
MN, even for the untreated case of historical control groups: a)
Amphelett and Delow (1) described the validity of the Poisson
distribution, b) Hart and Engberg-Petersen (2) found a good ap-
proximation to the binomial distribution, ¢} Mitchell et al. (3)
reported a negative binomial distribution, 4) Mackey and
MacGregor (4) established an extra-binomial variation under
treatment with clastogenic agents, ¢) Salsburg and Holden {5)
detailed problems in choosing & suitable distribution for
historical control data.

Mitchell et al. (3) discussed the presence of outliers in MN
data in terms of a possible existence of a subpopulation of more
susceptible responders. With this model, Ashby and Mirkova (6)
explained the variation in the MN data. A theoretical background
can be derived from the genetically based polymorphism in
mammalian P-450 xenobiotic metabolizing enzymes (7).
Another explanation is based on heritable strain differences in
MN induced by polycyclic aromatic hydrocarbons (8). In addi-
tion, nonresponders may arise due to improper administration
of the test substance in a single animal. This case will, however,
not be considered here. Mitchell et al. (3) focused on an outlier
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analysis of historical control data in relation to concurrent control
data and elimination of outliers with traditional statistical
methods,

Due to the unclear distribution behavior of the outcome
variable, rank tests were commenly used in several papers. For
example, Leimer et al. (9) described the application of the
Fisher-Pitman permutation test on micronucleus assay data. On
the other hand, MacGregor et al. (0) recommended the use of
Armitage’s (II') trend test assuming a binomial distribution for
MN in relation to the global number of polychromatic erythro-
cytes. In this respect, rank or permutation tests avoid the pooling
of MN within the groups under the binomial sampling assump-
tion and consider the importance of animai-to-animal variation,
For this reason, special types of rank tests (so-called score tests),
assuming a mixing distribution for the number of responders and
nonresponders in the dose groups, will be considered here.

Analysis Based on the Mixing
Distribution Assumption

Several methods assuming a mixing distribution can be used
to solve the test problem. Here, only nonparametric score tests
for the Lehmann (12) alternative hypothesis will be used (for-
mulated as a one-sided, two-sample problem without limiting
generalization).

LetX,,. . ., X,bethe MN responses of the control group with
the distribution function H{x), and let Y1, . . . ,¥,, be the MN re-
sponses of a dose group with the distribution function G(x). The
hypotheses can be formulated under the mixing distribution
assumption of responders and nonresponders inthe dose groupas:
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Ho: H(z) = Glz)
Hy: H(z) < G(z) with G(:t:) = PH(x) + (1 - p)Fpatho(z)

where p is the proportion of nonresponders, (I-p} is the propor-
tion of responders and p is assumed unknown.

Two types of Lehmann alternative will be considered here:
shift

* Frano(z) = G(z - §)

according to Good (/3) and power
¢ Fruno(z) = G*(z)

according to Lehmann (/2). Johnson et al. (14) suggested ap-
proximate score statistics for the shift alternative based on the
following mixed normal score function:

sm(i) = exp(—d* [2)eap(d® " (i/(m +n + 1))

where d is a constant (in the simulation study reported below,
d=0.5,1,1.5,2 were used; here, only the case d=1 will be
reported) and @ is the distribution function of the standard nor-
mal distribution.

Conover and Salsburg (/5) proposed the following approx-
imate score function for the power alternative, as a generalizaton
of Wilcoxon-Mann-Whitmey (WMW) scores:

seli) = (if{m +n + 1))t

where i is the rank in the combined (x+y) sample, a is an integer
constant (in the simulation study a=3,4,56 were used; here, only
the case a=4 will be reported. In toxicology, tests based on this
mixing distribution assumption have ben used for behavioral
studies (/6), teratological studies (17), sister chromatid exchange
(1), and chronic studies (18).

Simulation Study

In a simulation study, two questions will be addressed: a) Is
the assumption of such a mixing distribution a svitable approach
for analyzing data from the micronucleus assay? b) Can we
observe an increase in power (e.g. , in relation to the commonly
used WMW U-test), even in the guideline case considered here
where »; only equals 5?

The empirical distribution shown in Table I {(3) which ap-
proximates negative binomial distribution] was generated for the
control groups using a PC program. Power estimations (based on

Table 1. Empirical distribution of MN.

MN Probability of MN/100 PCE
0 0.462
1 0.325
2 0.145
3 0.049
4 0.018
>4 0.001

Abbreviations: MN, micronuclei; PCE, polychromatic erythrocytes.

1000 replications) of the asymptotic two-sample test based on
mixed normal scores [sm(i)(d=1)], asymptotic two-sample test
based on generalized MWM-score [sc(i) (a=4)], and the WMW
U-test were compared for a shift alternative (mean shift between
the control and dose group) with shift parameters of {1,2,3}; stan-
dard deviations: s.=1, sp=[1,2,3];0=[0.01, 005, 0.10}; number
of animals, n;= (5,10} and proportion of nonresponders, p: (00.2,
0.4,06038]. In Table 2, the power estimations of the three tests
under investigations are given for #;=5. Under the null hypoth-
esis, the «-estimations are quite close to the nominallevels, e.g. |
a =010 WMW:a = 0.091; smy). o = 0092; scfi): & = 0.014.

Table 2 shows that the score tests give a higher power than the
WMW test for a medium-size effect between the control group
and the dose group (represented by a shift 2) and the typical «
level of 005, even for only one nonresponder in five animals
{(p=0.2). These power differences are not relevant for smaller
shift parameters (e.g., 1). The differences arise with a larger o
level, so that n; = 5 and & = 001, should be avoided.

The question that arises is whether increasing the number of
animals up to 10 will give clear advantages of the score tests.
Table 3 presents the related power estimations. For small and
medium shift parameters, the increase in power of the score tests
is higher in relation to the small sample size situation.

The power behavior dependent on the proportion of nonre-
sponders p is given in Table 4. Table 4 presents the differences
between the score tests and the WMW test. These are seen to be
negligible both in the direction of a small proportion of
nonresponders (unimodal distribution of all animals exhibiting
a large reaction) and in the direction of a high proportion of
nonresponders (unimodal distribution of animals exhibiting a
small reaction; the estimation of p=0 equal to & is not given in
this table). Advantages of score tests are seen for proportions of
p=0.2-08, whereby the dependence [based on the efficiency
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Table 2. Power of selected score tests for #;=5 (5. =1).
Power estimations
a=0.10 a=0.05 a=0.01
5D Shift P WMW Score sc(i) Score sm(i) WMW Score sc(i) Score sm(i) WMW Score sc(i) Score sm(i)
{ i 0 0.67 0.59 0.61 0.51 0.45 0.47 0.28 0.22 0.23
{ i 0.2 0.51 0.48 0.49 0.34 0.33 0.33 0.15 0.12 0.12
i i 0.4 0.34 0.37 0.37 0.22 0.22 0.21 0.07 0.06 0.06
l 1 0.6 0.25 0.26 0.26 0.14 0.14 0.14 0.05 0.04 0.04
i 1 0.8 0.16 0.18 0.1% 0.09 0.09 0.9 0.03 Q.02 0.02
2 1 0 0.75 0.77 0.75 0.63 Q.57 0.63 0.35 0.30 0.30
2 i 0.2 0.59 0.59 0.69 0.42 0.41 0,40 0.17 0.15 0.13
2 1 0.4 0.40 0.45 0.44 0.26 0.25 0.26 0.08 0.07 0.07
2 1 0.6 0.27 0.30 0.30 0.15 0.16 0.15 0.05 0.04 0.04
2 1 0.8 0.17 0.19 0.19 0.10 0.09 0.09 0.03 0.02 0.02
3 1 Q 0.81 0.78 0.82 0.67 0.63 0.68 0.37 0.33 0.31
3 1 0.2 0.61 0.62 0.65 0.44 0.43 0.46 0.19 0.6 0.15
3 1 0.4 0.41 0.47 0.49 0.26 0.27 0.27 0.08 0.07 0.07
3 1 0.6 0.27 0.31 0.31 0.16 0.16 0.16 0.05 0.04 0.02
3 1 0.8 0.17 0.19 0.19 0.10 0.09 0.09 0.03 0.02 0.02
1 2 0 0.96 0.91 0.92 0.89 .83 0.84 0.69 0.68 0.68
1 2 0.2 0.81 0.82 0.81 0.65 0.70 0.68 0.30 0.30 0.28
1 2 0.4 0.56 0.65 0.63 0.39 0.42 0.40 0.13 0.12 0.11
1 2 0.6 0.33 0.42 0.39 0.20 0.21 0.21 0.06 0.05 0.05
1 2 0.8 0.19 0.23 0.22 0.11 0.11 0.11 0.03 0.03 0.03
2 2 0 0.98 0.98 0.97 0.95 0.89 0.92 0.75 0.72 0.72
2 2 0.2 0.86 0.87 0.87 0.69 0.75 0.72 0.32 0.31 0.28
2 2 0.4 0.58 0.68 0.67 0.39 0.44 0.43 0.13 0.12 0.11
2 2 0.6 0.34 0.44 0.40 0.20 0.22 0.21 .06 0.05 0.05
2 2 0.8 0.19 0.24 0.22 0.11 0.11 0.11 0.03 0.03 0.03
3 2 0 0.98 0.96 0.97 0.96 0.91 0.93 0.77 0.73 0.74
3 2 0.2 0.87 0.89 0.89 0.71 0.75 0.74 0.33 0.32 0.28
3 2 0.4 0.58 0.69 0.63 0.40 0.44 0.43 0.13 0.12 0.11
3 2 0.6 0.34 0.41 0.40 0.20 0.22 0.21 0.06 0.05 0.05
3 2 0.8 Q.19 (.23 0.22 Q.11 0.11 .11 Q.03 0.03 0.03
WMW, Wilcoxon-Mann-Whitney score.
Table 3. Power selected score (ests for ;=10 (s.=1).
Power estimations
a=0.10 a=0.05 a=0.01
Sp Shift J WMW Score sc(i) Score sm(i) WMW Score sc(f) Score smfi} WMW Score sc(i) Score sm(i)
1 1 0 0.87 0.75 0.77 0.75 0.64 0.66 0.51 0.39 0.41
1 1 0.2 0.71 0.64 0.65 (.56 0.49 0,49 0.29 0.24 0.23
1 1 0.4 0.50 0.49 0.48 0.35 0.34 0.34 0.15 0.12 0.12
1 1 0.6 0.32 4.32 0.33 .21 0.20 0.20 0.07 0.06 0.06
1 1 0.8 0.19 0.19 0.19 0.11 0.11 Q.11 0.03 0.03 0.03
2 ] 0 0.95 091 0.94 0.88 0.82 0.87 0.66 0.58 0.63
2 I 0.2 0.82 0.80 0.85 0.69 0.66 0.70 0.37 0.37 0.37
2 ] 0.4 0.59 0.62 0.66 0.42 0.45 0.48 0.19 0.18 0.18
2 1 0.6 0.37 0.43 0.45 0.24 0.26 0.25 0.07 0.07 0.06
2 1 0.8 0.21 0.23 0.23 0.12 0.12 0.12 0.03 0.03 0.03
3 1 0 0.96 0.94 0.97 0.91 0.87 0.92 0.71 0.65 0.71
3 i 0.2 0.85 0.85 0.89 0.74 0.74 0.77 0.41 0.41 0.42
3 1 0.4 0.62 0.71 0.76 0.4 0.51 0.54 0.20 0.20 0.20
3 1 0.6 0.37 0.46 0.52 0.25 0.28 0.28 0.08 0.07 0.07
3 1 0.8 0.21 0.23 0.24 0.12 0.13 0.13 0.03 0.03 0.03
1 2 0 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.91 0.91
1 2 0.2 0.98 0.97 0.97 0.95 0.93 .91 0.76 0.73 0.69
1 2 0.4 0.84 0.87 0.84 0.68 0.72 0.70 0.34 0.3% 0.34
1 2 0.6 0.50 0.61 0.60 0.34 0.44 0.41 0.11 0.12 0.11
1 2 0.8 0.24 0.30 0.30 0.13 0.16 0.15 0.04 0.04 0.03
2 2 0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.98
2 2 0.2 0.99 0.99 0.99 0.97 097 0.98 0.81 0.83 0.80
1 2 4 0.87 0.92 0.91 0.71 0.81 0.79 0.36 .44 0.38
2 2 0.6 0.51 0.68 0.70 0.35 0.48 0.45 0.11 0.13 0.11
2 2 0.8 0.25 0.3} 0.32 0.13 0.16 0.16 0.04 0.04 0.03
3 2 0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98
3 2 0.2 0.99 0.99 0.99 0.98 0.97 0.98 0.82 0.85 0.82
3 2 0.4 (.88 0.93 0.93 0.72 0.83 0.82 0.37 0.45 0.40
3 2 0.6 0.51 0.7 0.73 0.36 0.49 0.47 0.11 0.13 0.11
3 2 0.8 0.25 0.32 0.33 0.14 0.17 0.16 0.04 0.04 0.03

WMW, Wilcoxon-Mann-Whitney score.
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Table 4. Power = fiproportion of nonresponders) (=10, sp=2, shift=2).

a=0.10 a=0.05 a=0.01
p WMW Score sc(i) Score sm{i) WMW Score sc(i) Score sm(i) WMW Score sc(i) Score sm(i)
0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.98
0.1 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.93 0.93
0.2 0.99 0.99 0.99 0.97 0.97 0.98 0.81 0.83 0.80
0.3 0.96 0.97 0.97 0.89 0.91 0N 0.57 0.64 0.59
0.4 0.87 0.91 0.91 0.71 0.81 0.79 0.36 0.44 0.38
0.5 0.71 0.83 0.84 0.52 0.66 0.63 0.23 0.26 0.24
0.6 0.51 0.68 0.70 0.35 0.48 0.45 0.11 0.13 0.11
0.7 6.36 0.50 0.50 0.22 0.29 0.28 0.07 0.06 .06
0.8 0.25 0.31 0.32 0.13 0.16 0.16 0.04 0.04 0.03
0.9 ° 0.17 0.18 0.18 0.09 0.10 0.10 0.02 0.02 0.02
WMW, Wilcoxon-Mann-Whitney score.
power ‘Fable 5. Experimental MN data.
Dose MN Pooled data
‘ Control 32113203 3116000
21312133
1L 5 22101201 9/8000
10 33614331 24/8000
. 20 37384674 42/8000
40 262523342523 1929 204/8000
08— MN, miconuclei
06 _ 3;_/*'/’* Table 6. Statistical test results.
Dose groups
5 10 20 40
. Asymptotic WMW test
p-Value 0.97 008 0.002 0001
Significance ®=0.05 — - < <
Exact Fisher permutation test
p-Value 098 0047 0.001 0001
Significance a=005 — < < <
Asymptotic sc(i) score test
p-value (.98 0025 0.001 0001
. . . ! Significance a=0.05 — < < <

shift parameter

—_—

score se(l)  —F score sm(i) K~ WMW fest

n =10,p=0.5s =2

FIGURE 2. Power function of the WMW-test and score tests.

measure according to Lee and Wolfe (/9)] is not symmetric at
about p=0.5 (Fig. 1).

Only one point of the power function is given in Tables 2-4.
Therefore, the power functions for selected values of p,n;,s5p and
a are shown in Figure 2. For medium-size shifts, the differences
among the power functions are important up to a maximum shift
value (decreasing with smaller o levels}, after which parallelism
of the power functions holds true.

These simulation results for the biostatistical analysis of the
micronucleus assay suggest that the score tests have an advantage
in power in relation to the commonly used WMW test. These ad-
vantages are particularly relevant for a) medium to large effect
differences between the control and dose group, b) ranges of
p=02,...08, ¢)values of n; = 5 and & = 0.05. This advan-
tage increases as the sample size, n;, and « level become larger.

WMW, Wilcoxon-Mann-Whitney score; <, significant increase.

The micronucleus assay sometimes represents a “‘control versus
k dose groups design” for a one-sided, ordered alternative
hypothesis (because only increasing MNs with increasing doses
are considered biologicaily significant). Based on the two-
sample tests described above, a simple a priori ordering pro-
cedure (20) can be used in this case.

An Example

Experimental data from Kliesch et al. (21) were used for a
micronucleus assay on mice, 24 hr afier single per os treatment
of methyl methane sulfonate (MMS) (Table 5). Results of the
biostatistical analysis are shown in Table 6. This example shows
the greater sensitivity for the contrast between the control group
and dose group 10 for both the Fisher permutation test and the
score test.

Conclusions

From the results presented here, one can conclude that the
choice of statistical method for the analysis of micronucleus assay
data when MN is increasing relative to controls is not critical at
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the commonly used level of =0.05. However, a suitable choice
of test is necessary for small or medium-sized increases in
numbers of MN. This is applicable, for example, in the case of
the no-observed-effect dose estimation. With a simulation study,
based on an empirical negative binomial distribution of MN and
a shift alternative, an advantage in the power behavior of selected
score tests assumning a mixing distribution of responders and
non-responders is evident, even for the guideline case n, =5,
a>0085, p =01, and a medium-sized shift between dose and con-
trol groups.
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